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Abstract 

The main purpose of this work is to give a complete topological description of (nonlocal) sin- 
gularities of geodesic flows on multidimensional ellipsoids. These geodesic flows were studied 
before by many authors, but the structure of singularities was not known except for some cases of 
codimension 1. We consider some other geodesic flows as well, namely that of Liouville metrics 
on tori, and perturbations of ellipsoids’ metric on spheres. 
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1. Introduction and statement of the results 

The recent study of phase topology (i.e. topology of the phase space together with the 
dynamical system) in classical mechanics owes much to Smale’s program [Sm]. One of the 
main ideas is to use the bifurcation diagrams. Notice that singularities play a very important 
role in this program. 

For integrable Hamiltonian systems, Fomenko created a Morse-like topological theory, 
using Smale’s and others’ ideas (see, e.g. [Fo]). His topological invariants are essentially 
based on codimension 1 singularities. Thus Fomenko’s theory works well for systems 
with two degrees of freedom, where on regular isoenergy surfaces all singularities are of 
codimension 1. 

For systems with more degrees of freedom (or even systems with two degrees of free- 
dom if we do not restrict to an isoenergy submanifold), singularities of higher codimension 
naturally occur. Thus to have a good Morse-like theory in this case, we first have to under- 
stand the structure of typical singularities. 
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In [Zl,Z2] we studied the topological structure of general nondegenerate singularities 
of any codimension of integrable Hamiltonian systems. We recall some necessary notions 
from there. 

Consider an integrable Hamiltonian system u = XH generated by a Hamiltonian H on 
a symplectic 2n-dimensional manifold (M2”, 0). There exist n commuting first integrals 
F1 = H, F2, . . . . F,, for this system, and we will assume that Fi can be chosen so that 
they are independent almost everywhere, and their common level sets are compact. By 
Arnold-Liouville theorem, these common level sets are unions of Liouville tori wherever 
nonsingular, So we have an associated singular foliation of A4 by Liouville tori. In case H 

is nonresonant, as we will always assume, this foliation depends only on H and not on the 
additional first integrals. The orbit space, or base space, of this foliation will be denoted 
by C(M, u) and called the orbit space of u (cf. [Z2]). A point x E M2” is called singular 
of corank k if the rank of the differential of the moment map F, denoted by DF, is equal 
to (n - r) at x. It is called a non&generate singular point if its transversal linearization is 
nondegenerate (see, e.g. [El,DM,De,Z2]). A singular leaf, denoted by N, of the Lagrangian 
foliation by Liouville tori, is called nondegenerate if all of its points are either nonsingular 
or nondegenerate singular. The codimension of N is the maximal corank of the points in N. 
A (nonlocal, or semi-local) singularity is a germ of the Lagrangian foliation near a singular 
leaf N (in topological sense). It can be considered as a small tubular neighborhood U(N) 
of N with the singular foliation by Liouville tori in it, and such that U(N) is saturated 
by the leaves of the foliation in M 2n. If the codimension of N is k, we say that U(N) 
is a (k, n)-singularity. Two singularities U(N1) and U(N2), of type (k, nl) and (k, n2) 

respectively (nl 5 nz), are called topologically equivalent if U(N2) is homeomorphic, 
by a foliation-preserving homeomorphism, to the direct product U(Nl) x U(N3), where 
U(N3) is a tubular neighborhood of a regular Liouville torus of an integrable system with 
n2 -n 1 degrees of freedom. A nondegenerate (k, n)-singularity U(N) is called stable if the 
following conditions are satisfied: 
(1) There is a diffeomorphism @ : [Wn + [w” such that by taking the composition F’ = 

@ o F of the moment map with this diffeomorphism, we have that, under the new 
moment map F’ restricted to U(N), F’ : U(N) -+ [w” = ((xl, , x,)}, the singular 
value set of this map in [w” is contained in the union of the hyperplanes Uy=‘=, (xi = 0) 
(and N is mapped to the origin). 

(2) In N all the closed orbits of the Poisson action (generated by F) are tori of the same 
dimension (n - k). 

Recall also from [Z2] that condition 2 is automatically satisfied if Williamson’s type 
of N does not contain focus-focus components (and it is the case with our geodesic 
flows). Furthermore, all stable nondegenerate singularities are decomposable to the di- 
rect product of simplest codimension 1 or codimension 2 focus-focus components, after a 
finite covering. 

In this work we deal with geodesic flows of Liouville metrics on the torus T” and standard 
metrics on ellipsoids S” (and their perturbations). It is known that these geodesic flows are 
integrable, and they are important because many problems in classical mechanics can be 
reduced to these systems (see, e.g. [AKN]). 
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From codimension 1 singularities (i.e. letter-atoms in the terminology of Fomenko) we 
will need the following: d, A*, !3, ?k, &. The meaning of these letters are as follows: A is 
an elliptic singularity. A* is a simplest normally nonorientable hyperbolic singularity. f3 is a 
simplest (normally orientable) singularity. Pk, k 2 2, is the “cyclic” hyperbolic singularity: 
it has k vertices situated in a cyclic order in a plane, and every vertex has two common 
edges with the next vertex and two common edges with the previous one. vk, k 2 2, is 
the “chain” hyperbolic singularity: it has k ordered vertices, and every vertex is connected 
to the previous and the next vertices by 2 edges each as in case of Pk except that the first 
vertex has a loop (since its previous does not exist) and the same thing holds for the last 
vertex. See [PZ,PSZ] for the picture of codimension 1 singularities described above. By 
convention, the singularity P2 will be denoted C2. 

We can now formulate the main results. 
Let ds* = c gi (qi) c dqf be a Liouville metric on the torus T” with periodic coordi- 

nates qi, where gi -smooth positive functions. It is known (see, e.g. [AKN]) that the geodesic 
flow of this metric is an integrable Hamiltonian system on T*T” (with the standard sym- 
plectic form w = c dpi A dqi and the corresponding Hamiltonian H = c pi’/ c gi (qi)). 

Theorem 1. Assume that gi are Morse functions. Then for the above Liouville geodesic 

jlow we have: 

(a) It is a strongly nondegenerate system on T*T”\Tz (where T;f is the zero section), 

and nonresonant for almost any choice of gi (almost any means a dense open subset). 

(b) Any codimension one singularity of this system is of the type A, a, Pk or vk. 

(c) Any higher codimension singularity is the direct product (topologically) of codimen- 

sion 1 singularities of the above types A, l?, Pk,vk. Conversely, any direct product 

of the above types can be realized (with an appropriate choice offunctions gi of the 

metric). 

Remark. If we call the (unordered) set (S(gt), . . . , S(g,)) the code of the geodesic flow, 
where S(gi) is the code of the function gi defined as in [PZ,PSZ], then as in these papers, 
two Liouville metrics yield topologically equivalent Hamiltonian systems if and only if their 
codes are equivalent. Recall that two integrable Hamiltonian systems are called topologically 

equivalent if the corresponding singular Lagrangian foliations are homeomorphic. 

Consider now an n-dimensional ellipsoid 

(1) 

in the Euclidean space Rn3-t with the induced metric. The integrability of the geodesic flow 
on such an ellipsoid was proved by Jacobi in the last century. We will always assume the 
following general position condition: 

Octal <a2<...<a,+l. (2) 
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Theorem 2. The geodesic flow on the above ellipsoid S”, considered as a Hamiltonian 
system on T” S”\Sl, is strongly nondegenerate and has the following properties: 
(a) All codimension 1 singularities are d,Cz(n = 2); A, B,Cz(n = 3); A, A*, B,C2 

(n L 4). 
(b) Any higher codimension singularity is either equivalent to one of the following sin- 

gularities or to a direct product of some of them: A, A*, t3, C2, Eli (i = 1,2,3; j = 

1,2, . ..). Here El; is a stable nondegenerate codimension k singularity. Their descrip- 
tion is given in the next theorem. 

(c) There are exactly 2n stable closed orbits of the system, i.e. exactly n stable closed 
geodesics on S” (not counting the orientation). They are given by the equations 

( 1 
x = (Xi) c x,? = 0 

1 
(k= l,...,n). (3) 

15iQf1, i#k, k+l 

(d) Geodesicflows of any two ellipsoids with the same dimension (and in generalposition) 
are topologically equivalent. 

In Section 3, we will also consider perturbations of the ellipsoid’s metric in some inte- 
grable class: the associated geodesic flows are still integrable. These new geodesic flows 
can also admit Uk in the components of their singularities. 

Since all the singularities El; in Theorem 2 are stable nondegenerate, according to [Z2] 
they must be decomposable, after a finite covering, to a direct product of simplest singular- 
ities. Indeed, we have: 

Theorem 3. Any of the singularities El; in Theorem 2 admits a 2’-sheet regular cov- 
ering (for some natural number s), which is a direct product of singularities of types t3 
and CT. 

A more detailed description of El; is given in Section 3. 
The proof of the above theorems is given in the subsequent sections. The approach that 

we use is the classical method of separation of variables (MSV), in terms of the so-called 
Stackel systems. We hope that other systems, which are integrable by MSV, can be dealt 
with in a similar way. 

2. Liouville geodesic flow on torus 

We recall some facts about Stackel systems (see, e.g. [AKN,Wo]). Let c3 be an open 
subset of the standard symplectic space R2” (pi, qt ). A Stackel system in 0 is a Hamiltonian 
system u = XH in 0 given by a Hamiltonian function H of the type 

(4) 

where fS are smooth functions on pS, qS; Q(q) = det(&j (qj)):, j=l, where 4ij (qj) -smooth 
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functions depending only on qj , and @k[ (q) is the algebraic complement to element @k[ in 
the matrix (&j). Here we suppose that Q(q) is nonzero in #. 

It is known that this system is integrable with the aid of the following commuting first 
integrals: 

~i&y (i = 1,. *.,rl,F] = H). (5) 
s=l 

We are interested in the points where the first integrals (Fi) are dependent, i.e. in the singular 
points. Since the matrix (@ii), where from now on we will denote $ij = $ji, is invertible 
by assumption, the set of singular points is given by the following lemma. 

Lemma 1. The following equality holds: 

af1 5K 0 0 Cl 0 0 

0 . . . 0 0 . . . 0 

0 0 5 0 0 G, 
n 

(the right-hand side consists of two diagonal matrices), where 

Proofi From Eq. (5) for integrals Fi we have 

(*ij)F = f 3 

where F = (Fi), f = (fi). AS a consequence 

(f-3) 

(7) 

(8) 

(9) 

Since ($ij) does not depend on p, and fi depends only on pi, qi for every i, Eq. (9) 
means that 

Analogously, since every function +ij depends only on qi, we have 

af 
G - aq - ‘(($ij)F) = (@ii): + diag 

(10) 

(11) 

In other words, (&j)aF/aq = diag(Gi). 0 

Corollary 1. A point x E 0 is nonsingular (with respect to the system of integrals F = 
(Fi)) ifand only ifat this point we have nTc=,((afi/api)2 + Gt) # 0. Moreover, ifx is 



152 N. Tim Zung/Journal of Geometry and Physics 18 (1996) 147-162 

a singular point then the corank of x is equal to the number of indices i for which the 
following equality holds: 

“fi=+o 0 
t3pi ’ . 

(12) 

We will show that Liouville geodesic flows are particular cases of Stackel systems. The 
proof of the following lemma is straightforward. 

Lemma 2. The Hamiltonian 

where gi (qi) are the smooth positive functions, has the Stiickel t)?pe (4) with 

C&j) = 

g1 g2 (*. gn-1 gn 
-1 1 . . . 0 0 

0 -1 .._ 0 0 
. . . . . . . : 
0 0 . . . 1 0 

0 0 . . . -1 1 

(13) 

(14) 

NOW look at a Liouville geodesic flow on T” Its Hamiltonian H = c pi’/ c gi (qi) has 
the type (13) with fi (pi, qi ) = p:. Thus we can consider our geodesic flow as a Stackel 
system with fi(pi,qi) = p: and (@ij) given by Eq. (14). The singularity condition (12) 
(for the Poisson action generated by the system of first integrals F given in Eq. (5)) in our 
case can be rewritten as follows: 

pi = dgi/dqi = 0. (15) 

Eq. (8) has the following form: 

M-Fz=p:, 
g2H + F2 - Fj = p;, 

(16) 

g-1 H + Fn-1 - Fn = p,2-,> 

g,H + F,, = p,2. 

In other terms 

giH+Ci=pf, i=l,..., n, (17) 

where 

Cl = -F2, c2 = F2 - F3, . , . , Cn-l = Fnml - F,,, C, = F,,. (18) 
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Thus the Lagrangian foliation by Liouville tori is given by the equations 

153 

H = const, Ci =const (i = l,...,n) (19) 

in the cotangent bundle T*T”. 
In the following lemma, instead of the original Hamiltonian flow we will consider the 

Poisson action generated by the moment map F = (Fi), given by (16). 

Lemma 3. Let gi (qi) be Morse functions as before. Then a point x = (p, q) E T*T”\T{ 
is a regular point of the system (i.e. the Poisson action of the moment map F) ifand only if 
at this point we have 

<Pf + (dgi/dqi12) # 0. 
i-l 

(20) 

A point x is singular of corank k if and only ifthere are exactly k indices i such that at x 
we have pi = dgi/dqi = 0. 

ProoJ Recall that the level sets of the moment map are given by Eq. (17). Thus each level 
set is the direct product of the curves {gi H + Ci = pi’] on the cylinders T*T’(pi,qi). If 
at a point x we have pi = dgi/‘dqi = 0 (for some i), then the curve {gi H + Ci = p,‘} is 
singular at x (i.e. at (pi(x), qi (x)). (More precisely, x will be either an isolated point or a 
point of transversal self-intersection.) Lemma 3 follows easily from this observation. 0 

In order to see the nonresonance of the original Hamiltonian system, we have to look 
at a system of action coordinates. Recall [Zl] that a system of action coordinates (for an 
integrable Hamiltonian system) is a system of action components of the system of action- 
angle coordinates. Also, if y is a l-cycle on a Liouville torus and we extend it to nearby 
tori by homotopy, and (Y is a l-form such that do equals to the symplectic form, then an 
action function (i.e. a function in a system of action coordinates) can be given by Arnold’s 
formula A = &, 111. Applying the above formula to our case, we obtain a system of action 
functions A = (Ai) (i = 1,. . . , n) with 

(the integral is taken on a connected component of the set {gi H + Ci > 0)). 
Of course, A is also a full system of commuting first integrals for our flow (they are 

constant on Liouville tori). So H can be written as a function of (Ai). Fix a value of H. 
Then when Ci vary, A will vary according to (21) so that to draw a hypersurface in the 
space [w” = ((Ai)}, which is in fact a level set of H. There is only one relation between Ci : 
2 Ci = 0. It follows that 

(E)-(z&l. 
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Thus to show that Hamiltonian H is nonresonant, it is enough to compute aAi/aCi and 
show that these values are rationally independent (for a subset of full measure of the orbit 
space). 

For convenience fix H = 1 (by homogeneity of geodesic flows, we can do so). Fix an 
index i. Then Ai is simply the action function for a system with one degree of freedom and 
with the potential equal to gi. Then some simple arguments show that for almost any gi, 
the function 3 Ai /Xi (as a function on Ci) is nonconstant: its derivative is nonzero almost 
everywhere. It follows easily that for almost any choice of (gi) the family (aAi/aCi);=‘=, is 
rationally independent almost everywhere. In other words, we have: 

Lemma 4. For almost any choice of Morse functions gi, the Liouville geodesicjlow on the 
n-dimensional torus is nonresonant. 0 

Remark. It is possible to choose gi (every gi is of the type const - q? locally somewhere, 
say), so that the Liouville geodesic flow is resonant in some domain of T*T”. 

Proof of Theorem 1. It follows easily from Lemmas 3 and 4, by the same standard arguments 
as in [PZ,PSZ]. 

3. Geodesic flow on the ellipsoid 

Since the ellipsoid S” = (CyL, xf/ai = 1 ), al < a2 < . . . < an+], does not have 
global systems of coordinates, it is difficult to write down directly the Hamiltonian and first 
integrals for its geodesic flow. Our idea is to make use of a ramified covering Tn + S” to 
pull the metric on T” and then apply the results of the previous section. 

Following Jacobi, we will use the so-called elliptic coordinates on 9, At, . . , A,,, which 
are nonzero solutions of the equation 

n+l 
gL1 
1 &-A 

(22) 

and with the property that al < Al < a2 < k2 < . . . < A,, < a,+]. 
The system of elliptic coordinates (A.i) is regular at any point x E S” for which xi # 0 

(i = l,..., n + 1). However, this system is singular on subellipsoids 

Skn-l=[X=(Xi)ESnIXk=O] (k=l,...,n+l). (23) 

We consider how the functions hi behave near that subellipsoids. 
First note that for every i the critical point set of the function 1i is contained in the union 

s;-l u s,“;;. 
From Cxf/ai = CxF/(ai - hi) = 1 we have 

Xi 
ak@k -ad 

(24) 
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For a fixed point n = (xi) E S” with Xk near to 0 (it is enough that Xl/Q < 1) the 
function &(X, A) = x+k I X?/Ui(aj - 1) is strictly increasing as a function of h on the 
interval (ak-1, ak+l). COnstrUCt the following sets: 

xk = b E $-’ 1 gk(x, Uk) > o), 

yk = {x E $-’ 1 gk(X, Uk) < o), 

zk = (X E si-’ 1 gk(X, Uk) = 0). 

(25) 

If x0 E Xk then for any point x = (Xi) E S” near to x0. we have that gk(x, Uk) 2: 
gk(X0, Uk) > 0. Hence if Xk # 0 and is near to 0, there is a number hk greater than Uk and 
near to Uk, which satisfies Eq. (24), and therefore & = kk(x). It means that the function 
lk iS noncritical at x and kk tends to ak when x tends to x0. Thus from Eq. (24) it follows 
that hk is extendable smoothly on Xk so that on Xk it attains the minimal value ak, and Xk 
is a nondegenerate critical submanifold for k\-k. Analogously, kk attains the maximal value 
on Yk+ t and Yk+ t is a nondegenerate critical submanifold for hk. 

Consider hl. By Eq. (3) we have that X1 = S;-‘, Y2 is a disjoint union of two (n - l)- 
dimensional balls, Z2 is the boundary of Y2 and is a disjoint union of two (n-2)-dimensional 
spheres. Consider the 2-sheet covering S”-t x Tt + S”(T’ = S’), with the ramification 
in 22 = 2(pt] x S”-2. We can lift all the functions hi on 9-l x T’. Then hl is a function 
depending only on the T’ factor. Remember that on S;-’ = (x E S”, xl = 0} we have 
thatkt =at,andhz,..., hn+t are the system of elliptic coordinates for the ellipsoid ST-‘. 
For every value of ht between al and a2, at < At < a2, the ellipsoid 

I 1 
n+l x? 

S;-‘(~.)=(xES”~Il~(x)=~~,x~~0]= XES” c-- 
1 Ui -hi 

= 1,x150 
I 

n+l 
= 

I 1 
X = (Xi> ~~~a,~~i-~a~l~ 

2 ’ 

= 1,xl =*J@q 

can be deformed to 

$, = 
1 

Y=(Y2r...tYn+l) CL= 
Ui -hl 

1 2 
I 

which is confocal to S;-‘, by putting yi = xi J(ai - al)/ai. By replacing hl by hk, k > 2, 
one obtains that S;, has (hk - )Lr) as its system of elliptic coordinates. It follows that 

there is a canonical diffeomorphism from Sz-‘(kt) to S;-‘, which preserves the func- 
tions h2, . . . , h, . Hence on the direct product S”-’ x T’ , the functions AZ, . . . , A,, can be 
considered as functions on the 9-l component (namely, as elliptic coordinates on S;-‘). 

Repeating the above procedure, we obtain a chain of 2-sheet coverings: 

T” + S2 x T”-2 + S3 x T”-3 -+ . . -+ S”-’ x T’ -+ S”. (26) 

On the whole we get a 2”-‘-sheet covering T” + S” with is ramified over the set 

u;:,’ zk (zl = Zn+l = 0). Note that this set is, as usual, a subset of codimension 2 in 
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S”, and when n > 4 it is a subvariety with singularities (when n = 2 or 3 it is a smooth 
submanifold). 

Under the covering T” + S” constructed above, we have a natural decomposition 
T” = T; x Ti x . . x T,’ , and the function h; depends only on the ith component Ti’ . 

We now lift the metric from the ellipsoid S” to the torus Tn via the above covering. Note 
that every function h; is a Morse function on Tit, which has two maximal and two minimal 
points on Ti’, and which is invariant under a natural Z2 @ Z2-action (which is generated 
by two reflections) on q’ . It follows that on every q’ there is a regular periodic coordinate 
function 4; (which is unique up to a constant), such that the function h; = k; (qi) satisfies 
y; (0) = a; and has the differential 

dk; 

\ 

n+l 

dqi = f w’q’ l-pk - A;). 

k=l 
(27) 

Consequently, on T” we have the system of coordinates (4;). Let 4~; be the period of 4;. 
Then we have y; (0) = y; (20;) = a; and y; (0;) = y; (30;) = a;+1 . It is straightforward to 
check that the covering construction (26) is nothing else but the following chain of coverings 

T” + T”l~n-1 + (TnlVn-l)lVn-2 + . + ((T”/+-1). .)/VI> (28) 

where each n; is an involution given by the following map: 

9i + 23 -qi> 4i+l + -4i+l7 qk+qk (k#i,i+l). (2% 

Recall (see, e.g. [AKN]) that the standard induced metric on the ellipsoid has the form 

ds2 = c ‘&(h)$ (30) 

where Mk(k) = (ny=u j+k(hj - &))/(flr,: (uj - hk)), ha = 0. From (27) we have 

ii = (-l)k4ihi’ flyz:(aj - yk), and therefore 

ds2 = 2 Nk(q)& (31) 

where Nk(q) = (-l)k+’ njzk(Aj - hk). 
Of course, the lifted metric on T” will have the same form (31). This metric on T” has 

singularities. Namely, it is degenerate in the preimage of the ramification set Ui=, &. 
The lifted geodesic flow on the (punctured) T” (i.e. in the domain where the metric is 

nondegenerate) has the Hamiltonian 

with Pk = Nk (q)&. This Hamiltonian has the Stackel type 

H=e@;fi 
1 

(33) 
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With &i(qi) = (kj(qj))‘-‘7 fi(pi, qi) = (-l)n-ip?. 
Consequently, we have a system of commuting first integrals (Fi) for this geodesic flow, 

given by Eq. (5) (F” = H). 

Eq. (8) in this situation has the form 

D(F,hi) = (-l)“-‘p? (i = 1,. . .) n), (34) 

where 

D(F,h)=Fl+~F*+...$~n-lFn. (35) 

Consider a level set (Fi = const} in T*K”, where K” is Tn minus the degenerate set 
of the metric. According to (39, when F = (F;) = const, D(F, h) is a polynomial of 
degree (n - 1) in h. As in the previous section, it is enough to consider the isoenergy level 
H = 1, i.e. we can fix the highest degree coefficient in the polynomial D(F, h). Suppose 
that a level set {F = const) is nonempty. Then this set is given by the following system of 
equations and inequalities: 

(U-i 5 hi 5 Ui+l, (-l)“-‘D(F, hi) > 0, pi = fJ(-I)“-‘D(F, hi)}. (36) 

Since hi 5 hi+] and (-l)“-‘D(F, Ai) 2 0, it follows that in case {F = const) is 
nonempty we have that the polynomial D(F, A) has (n - 1) real roots, denoted It, . . . , In-t, 
with the property that 

11 5 I1 5 h2 5 12 5 . . . 5 In-l ( h, 

for any point (pi, qi) E {F = const] with ki (qi) = hi, 
Since ai ( hi 5 ai+t, from (37) we have 

ai I Ii I &+2 (i = l,...,n- 1) 

and 

(37) 

(38) 

11 I 12 5 . . . 5 In-]. (39) 

It is clear that It, . . . , In-1 are determined uniquely by Ft, . . . , F,-l, F,, = H = 1, so 
they are also commuting first integrals of our Hamiltonian system. Hence instead of taking 
the system of first integrals (Fl , . . . , Fn-l), we can take Z = (Zt , . . . , In-t). 

Lemma 5. rfu value I0 = (I0 1 , . . . , Zfpl) satisfies the conditions (38) and (39), then the 

level set (I = Z”} is nonempty. Zf Zo # a, and I,? # ZL?+l for any i, s, then this level set 

is regular (i.e. it is a union of some Liouville tori in T* K”). I f  there are k pairs of indices 

(i,s) such that I: = a, and 1 indices i such that I,! = I,?+, E R\{ul, . . ,a,+~), then it 

corresponds to a codimension (k + 1) singularity. 

Pro08 Since IF,. _ . , It-, are roots of the polynomial D(F”, h), we have 

(-l>“-‘D(P, h) > 0 
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if k belongs to [Z,“_,, Zz?] (i = 1,. . . , n - 1; Zoo = -oo, I,” = +co). From the conditions 
(38), (39) it follows that the following closed intervals are nonempty: 

Consequently, there are numbers ht , . . . , h, with the property hi E Li, At < h2 < . . . < 
1,. Hence the level set {Z = Z”} is nonempty, according to (36). 

Under the additional condition that Z[? # a, for any i, s, the intervals Li are pairwise 
disjoint. Consequently, in this case the level set (I = 1’) is the direct product of the curves 
on T*q’ (pi, qi), which are given by the equations pi2 = (- l)‘-i D(F”, hi), hi E Li. If 
z; # Zi”+,(i = 1,. . . , it - 2), then these curves are smooth, and the level set is regular. If 
there is a unique index i such that ZF = IF+,, then Li+t is just one point, and the curve 

Pi:* = (-l)“-‘-‘D(F’,hi+t) consists of only 4 points (because there are 4 different 
values of qi+t with hi+1 (qi+t) = Ii”+,). It is easy to see that in this case we have an elliptic 
codimension 1 singularity. 

When there is a unique pair of indices (i, s) such that Z,? = a,, and Z,u # Z,u+l for 

any j, the curves {pz = (-l)“-SD(Fo,h,)) (in T*T,‘(ps,qs), ifs 5 n) and (p,‘-, = 

(-lY-“+‘~(~“,L~)~ (in T*Tsl-l(ps-l,qs-l), ifs 2 2) are not regular curves. They are 
either discrete points or have the form of a union of two circles which intersect each other 
transversally at two points. This situation corresponds to a stable codimension 1 singularity: 
the topological type of the above singular curve does not change when we perturb the value 
of the integrals Zk = Zf (k # i) (under a small change of the value Z1u we get a regular level 
set). 

Thus we have proved Lemma 5 for the case k + 1 = 1. The case k + 1 > I can be treated 
similarly. 0 

Proof of Theorem 2. Note that the image of regular Liouville tori of the system on T* K” 

under the induced projection T* Kn + T *S” are regular invariant tori for the geodesic 
flow on S”, and the closer of the image of singularities in T* Kn is singularities of the same 
codimension on S”. Hence the strong nondegeneracity of the geodesic flow on S” follows 
from Lemma 5. 

For assertion (a), we just have to list all the codimension 1 singularities using the above 
lemma. The list consists of five cases: 
(1) zp = z;+t, Z: # Z,o+t (j # i) and Z,u # a, for any j, s. As was shown in the previous 

lemma, in this case we have elliptic singularities (i.e. type A). 
(2) Z! # Z,o+t for any j, Zy = ui or ZF = ui+2, and Z,c # Uk for any other pair (j, k). In 

this case Li is a point or Li+t is a point. Again we obtain an elliptic singularity. 
In cases (3)-(5), IF = ai+], ZT # Uk for any other pair (j, k), Z: # Zlc+l for any j. 

(3) Ii”+, > ai+2, Z1u-, < ai. In this case we have a codimension 1 singularity of type Cl. 
(See [PZ] for the case n = 2. The case n > 2 is the same topological.) 

(4) @+1 > Ui+2,Zio_, > Ui) or (I’+’ < a;+~, Zi-1 < ai). In this case we have a 
codimension 1 singularity of type B. It can be seen by checking the number of Liouville 
tori before and after a bifurcation. 
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(5) <Ii”+1 < a; +2, Zp- t > a;). In this case we have a codimension 1 singularity of type A*. 
When n > 4, all the above five cases do occur. When n = 3 only cases (l)-(4) can 

happen, and when n = 2 only cases (2) and (3) can happen, because of the range of the 
indices. Assertion (a) is proved. 

As we have shown, singularities of our flow occur where some of the values Z,o of the first 
integrals coincide or equal to the constants a,. From this follows that higher-codimension 
singularities can be decomposed into the direct product of multipliers, and a natural list of 
all the multipliers consists of the following six cases: 
(1) ZF = Ui+l, It?+1 = a;+2,. . . , ZF+k-l = a;+k, Zf+k > a;+k+t, Z;u-t < a;. We denote 

this singularity by El: (k 2 1). 
(2) 1: = Ui+l, IF+1 = C&+2,. . . , IF+k-l = Ui+k, (ly+k - Ui+k+l)(ffel - Ui) > 0. we 

denote this singularity by EL: (k 2 1). 

(3) ZF = a;+l, ZF+t = a;+2, . . . , ZF+k = a;+k+r, ZF+k+l < a;+k+2, ZF-, > a;. Wedenote 
this singularity by EZ3 o _ ,k+l ck 2 ‘1. 

C4) l,’ = ai+ I;+, - 4+2,. . . , I,?+k-, = 

I,?-1 = lP =Ui,I? 

Ui+k; IF+k = $!+k+, = Ui+k+l, Il!1 < ai or 

1-2 ;+k > a;+k+l. We denote this singularity by Eli+:! (k 2 0). 
(5) 1: = a;+l, IF+1 = a;+2, . . , Iio,k-1 = Ui+k; lF+k = lF+k+l = Ui+k+l, f!-, > Ui Or 

p1 = I? r-2 = a;, Zl?+k 

(6) I,? = u;+~, ZL?+l = 

< a;+k+r. We denote this singularity by El:,, (k >_ 0). 
ai+2?. . . , z,?+k-l = ai+k; lp+k = Iio,k+l = Ui+k+l, Ii!, = 

Zfce2 = a;. We denote this singularity by EZ,6+, (k 2 0). 
It turns out that we have the following topological equivalences: 

El;,, = El;+,, x A, El;,, = El;,, x A, El;+, = El;,, x A x A. (41) 

Hence we can restrict our attention to the first three cases of the list. El,‘, Elf and Elf 
are codimension 1 singularities, and they were already listed in the previous list: Elf = 
C2, El: = B, Elf = A*. 

Thus we have proved assertion (b). The proof of the rest of Theorem 2 is straightforward. 
For example, stable closed geodesics correspond to elliptic codimension (n - 1) singularities, 
and they are given by the following equations, which are equivalent to Eq. (3): It = al, 12 = 

a2,..., Ik-1 = a&l, Ik = C&+2, Ik+l = ak+3,. . . , In-l = an+1 (k = 1,. . . , a). 0 

We now replace the functions hr , . . . , kn by some new functions xl, . . . , i,, with the 
following properties (for each i = 1, , . . , n): 

(a) X; is a Morse function on Til. 
(b) X;(q;) = i;(-4;) = X;(20; - 4;). i.e. X; is & @ ;22-invariant. 

Cc) $(mW)=$(mU;) (m=0,1,2,3;k=0,1,2 ,... ), 
1 I 

i.e. at four points mm; the functions x; and h; are formally the same. (Recall that 40; 
is the period of q; in T;’ .) 

(d) Like I;, the function X; attains the value a; only at 0, 2~; and the value a;+1 only at 
Wj ,3Wj. 
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We can then replace (n) by (A) in all of the previous formulas. More precisely, formulas 
(30), (26) with (n) replaced by (pi) will give a new metric on the punctured torus K”. 
Condition (d) assures the regularity of this metric in K”. From conditions (b) and (c), it 
follows that this metric corresponds to some smooth metric on sphere S”. It is clear that 
this new metric is also integrable. Condition (a) implies that all singularities of its geodesic 
flow are also nondegenerate. 

In case each function by (pi) is monotone on (0, wi), the corresponding geodesic flow 

will be topologically equivalent to that one given by the standard metric on the ellipsoid. 
But if these functions have critical points other than moi, then we will obtain new integrable 
geodesic flows which are not topologically equivalent to the classical case. In particular, for 
these new metrics, besides the singularities listed in Theorem 2 there can be nondegenerate 
codimension 1 singularities of the type Vk (also as a multiplier for higher codimension 
singularities). The appearance of these singularities can be seen from Theorem 1. (See [PZ] 
forthecasen = 2.) 

4. Topological structure of singularities El; 

We can compute the singularities EZj by induction, starting from j = 1. To simplify the 

task, we use the main result of [Z2], to know a priori that El;, after a finite covering, are 
direct product of codimension 1 singularities. As a result, we have: 

El! = C(l) x Cc2) x . . . x c~)/(zp, 
Eli = gl) x ,$2) x Cc3’ x . . . x C(j-l) x Cf’/(m2)j-1, 

El! = B(l) x $ x & x . . . 
(42) 

J 
x $-I) 2 x &9/(&p 

(upper numbers are simply enumerations). 
Here the action of (E&l is defined as follows: each Z$’ acts only on the ith and (i + 1)th 

components of the product, leaving the other invariant. More precisely, recall that C2 has two 
different commuting involutions, which preserve the foliation and interchange the critical 
points. a has (only) one (orientation-preserving) involution. Denote by #) (s = 0, 1 if 
i # 1, j, s = 0 if i = 1, s = 1 if i = j) the above involutions on the ith component of the 
product. Then Z!$’ acts on the product of singularities by the following involution: 

(Xl,..-, Xj) + (Xl,. . . , X,-l bt)(Xi) b(‘+‘) I 3 , 1 (Xi+l)3xi+27*-*vxj). 

4.1. Some concluding remarks 

There is another way to study the topology of geodesic flows on ellipsoids in the literature. 
First, following Moser, one shows that the geodesic flow can be written in the Lax form 
by using an extended flow called the “line flow” (see, e.g. [MO]). Then one can linearize 
the flow by using the Jacobian varieties of the spectral curves (cf. [AM,Gr]). A general 
program by Audin states that one can study the topology of integrable systems by using 
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Jacobian varieties, and in a sense it was done for the geodesic flows on ellipsoids in [Au]. For 
example, the number of disjoint Liuoville tori over a point in the image of the moment map 
was computed there. (This number can also be seen from (42).) I think that this algebraic 
approach would lead to the same description of singularities as above, via the study of 
families of real algebraic curves (ovals). 

This work is a generalization of our joint work with Polyakova and Selivanova [PZ,PSZ]. 
The idea of using ramified coverings T” + S” in considering geodesic flows on ellipsoids 
is taken from there. In this work we concentrated on the topological structure of singularities. 
But from this analysis one can derive other topological invariants comparatively easily. One 
may observe that for all integrable geodesic flows on S” discussed above, the orbit space 
of the corresponding singular Lagrangian foliation is a stratified manifold (with a natural 
stratification by codimension of singularities), whose strata are all contractible. 

An integrable system closely related to geodesic flows on ellipsoids is the Neumann 
problem (cf. [MO]). In a sense, the geodesic flow can be considered as a subsystem of the 
Neumann problem. A nondegenerate hyperbolic singularity of maximal codimension for 
the Neuman problem was detected in [Dv]. We hope to return to this problem soon. 
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